EECS 861 Homework 10

- 1. Chapter 4: Problem 4.5
- 2. Chapter 4: Problem 4.12
- 3. The transfer function of a linear time invariant filter is $H(f) = \frac{100}{0.001 + j2\pi f}$

The input to this filter is zero-mean white Gaussian Noise with $S_x(f) = 10^{-10}$ Watts/Hz

- a) Find the PSD of the filter output Y(t).
- b) Find E[Y(t)]
- c) Find Var[Y(t)]
- d) Find the noise power at the filter output Y(t).
- 4. N(t) is bandpass white Gaussian noise with $\eta/2=10^{-14}$, centered at 10 Mhz with a bandwidth $B_N = 10$ Mhz.
 - a. Find the noise power.
 - b. Find $P(|N(t)| > 5x10^{-4})$.
- 5. A random signal X(t) is corrupted by statistically independent additive white Gaussian noise, N(t) with a bandwidth B_N and is input to a linear time-invariant filter H(f).

$$S_N(f) = \begin{cases} \frac{\eta}{2} & |f| < B_N \\ 0 & \end{cases}$$

 $X(t) = A\cos(2\pi f_c t + \theta)$ where θ is uniformily distributed [0, 2π] and A and f_c are constants H(f)= $\frac{1}{1 + \frac{1}{2}(2-f_c t + f_c)}$

$$1 + j(2\pi f / f_0)$$

- a) Find the input signal-to-noise ratio for $B_N = 100$ kHz, $A = 10^{-5}$ V, $f_c = 50$ Hz, $f_o = 1000$ Hz, and $\eta = 10^{-15}$
- b) Find the output signal-to-noise ratio for $B_N = 100$ kHz, $A = 10^{-5}$ V, $f_c = 500$ Hz, $f_o = 1000$ Hz, and $\eta = 10^{-15}$
- c) Find the output signal-to-noise ratio for $B_N = 100$ kHz, $A = 10^{-5}$ V, $f_c = 1000$ Hz, $f_o = 1000$ Hz, and $\eta = 10^{-15}$
- d) Find the output signal-to-noise ratio for $B_N = 100$ kHz, $A = 10^{-5}$ V, $f_c = 2000$ Hz, $f_o = 1000$ Hz, and $\eta = 10^{-15}$
- e) Why does the output signal-to-noise ratio change as f_c changes.
- 6. A first order autoregressive process is defined as $Y[k]=a_1Y[k-1] + N[k]$. Where N[k] is zero-mean white Gaussian Noise with a variance of $\sigma^2=1$. Let $a_1=-0.5$ and $\sigma^2=1$. Find $E[Y(k)], E[Y^2(k)], Var[Y(k)], and R_{YY}(m)$.

- 7. Chapter 5:
 - a. Problem 5.58
 - b. If in Problem 5.58 f_0 is changed to $f_0=995$ kHz, does $S_{NcNc}(f)$, and $S_{NcNs}(f)$ change, if so why?
- 8. A second order moving average process is defined by

 $X[n] = e[n] + b_1e[n-1] + b_2e[n-2]$ where e[n] is zero-mean white Gaussian Noise with a variance of σ^2 . Find the covariance matrix for X[n], X[n-1], and X[n-2]. For $b_1 = .75$ & $b_2=.5$ and $\sigma^2=2$ validate your result using <u>http://www.ittc.ku.edu/~frost/EECS_861/Mathematica_files/MA-order-2-Take-1_example.cdf</u>

- 9. Use the data in given file.
 - a. Find and plot the autocorrelation function of this data. <u>http://www.ittc.ku.edu/~frost/EECS_861/Mathematica_files/Homework_10_data</u> <u>_2017.csv</u>
 - b. Could this data be a sample function from an MA(3) process, justify your answer.
 - c. Assuming this data is a sample function from an AR(1) process suggest a value for α₁. Hint experiment with the AR(1) example in http://www.ittc.ku.edu/~frost/EECS_861/Mathematica_files/ARMA_study-V4.cdf